doc IDA

Documentation of the IDA function.

helpFun('IDA')
 Incremental Dynamic Analysis

 [DM,IM]=IDA(DT,XGTT,T,LAMBDAF,IM_DM,M,UY,PYSF,KSI,ALGID,U0,UT0,...
     RINF,MAXTOL,JMAX,DAK)

 Description
     This function performs incremental dynamic analysis of a given
     acceleration time history and SDOF oscillator.

 Input parameters
     DT [double(1 x 1)] is the time step of the input acceleration time
         history XGTT.
     XGTT [double(:inf x 1)] is the input acceleration time history.
         numsteps is the length of the input acceleration time history.
     T [double(1 x 1)] contains the eigenperiod of the SDOF system for
         which the incremental dynamic analysis response curve is
         requested.
     LAMBDAF [double(:inf x 1)] contains the values of the scaling factor
         (lambda factor) for the incremental dynamic analysis. 
     IM_DM [char(1 x :inf)] is the Intensity Measure (IM) - Damage Measure
         (DM) pair that is to be calculated from the incremental dynamic
         analysis. IM_DM can take one of the following values (strings are
         case insensitive):
         'SA_MU': Spectral acceleration-ductility
         'PGD_MU': Peak displacement-ductility
         'PGV_MU': Peak velocity-ductility
         'PGA_MU': Peak acceleration-ductility
         'SA_DISP': Spectral acceleration-displacement
         'PGD_DISP': Peak displacement-displacement
         'PGV_DISP': Peak velocity-displacement
         'PGA_DISP': Peak acceleration-displacement
         'SA_VEL': Spectral acceleration-velocity
         'PGD_VEL': Peak displacement-velocity
         'PGV_VEL': Peak velocity-velocity
         'PGA_VEL': Peak acceleration-velocity
         'SA_ACC': Spectral acceleration-acceleration
         'PGD_ACC': Peak displacement-acceleration
         'PGV_ACC': Peak velocity-acceleration
         'PGA_ACC': Peak acceleration-acceleration
     M [double(1 x 1)] is the mass of the SDOF oscillator.
     UY [double(1 x 1)] is the yield displacement of the SDOF oscillator.
     PYSF [double(1 x 1)] is the post-yield stiffness factor, i.e. the
         ratio of the postyield stiffness to the initial stiffness. PYSF=0
         is not recommended for simulation of an elastoplastic system. A
         small positive value is always suggested. PYSF is ignored if
         MU=1.
     KSI [double(1 x 1)] is the fraction of critical viscous damping.
     ALGID [char(1 x :inf)] is the algorithm to be used for the time
         integration. It can be one of the following strings for superior
         optimally designed algorithms:
             'generalized a-method': The generalized a-method (Chung &
             Hulbert, 1993)
             'HHT a-method': The Hilber-Hughes-Taylor method (Hilber,
             Hughes & Taylor, 1977)
             'WBZ': The Wood–Bossak–Zienkiewicz method (Wood, Bossak &
             Zienkiewicz, 1980)
             'U0-V0-Opt': Optimal numerical dissipation and dispersion
             zero order displacement zero order velocity algorithm
             'U0-V0-CA': Continuous acceleration (zero spurious root at
             the low frequency limit) zero order displacement zero order
             velocity algorithm
             'U0-V0-DA': Discontinuous acceleration (zero spurious root at
             the high frequency limit) zero order displacement zero order
             velocity algorithm
             'U0-V1-Opt': Optimal numerical dissipation and dispersion
             zero order displacement first order velocity algorithm
             'U0-V1-CA': Continuous acceleration (zero spurious root at
             the low frequency limit) zero order displacement first order
             velocity algorithm
             'U0-V1-DA': Discontinuous acceleration (zero spurious root at
             the high frequency limit) zero order displacement first order
             velocity algorithm
             'U1-V0-Opt': Optimal numerical dissipation and dispersion
             first order displacement zero order velocity algorithm
             'U1-V0-CA': Continuous acceleration (zero spurious root at
             the low frequency limit) first order displacement zero order
             velocity algorithm
             'U1-V0-DA': Discontinuous acceleration (zero spurious root at
             the high frequency limit) first order displacement zero order
             velocity algorithm
             'Newmark ACA': Newmark Average Constant Acceleration method
             'Newmark LA': Newmark Linear Acceleration method
             'Newmark BA': Newmark Backward Acceleration method
             'Fox-Goodwin': Fox-Goodwin formula
     U0 [double(1 x 1)] is the initial displacement of the SDOF
         oscillator.
     UT0 [double(1 x 1)] is the initial velocity of the SDOF oscillator.
     RINF [double(1 x 1)] is the minimum absolute value of the eigenvalues
         of the amplification matrix. For the amplification matrix see
         eq.(61) in Zhou & Tamma (2004). Default value 0.
     MAXTOL [double(1 x 1)] is the maximum tolerance of convergence of the
         Full Newton Raphson method for numerical computation of
         acceleration.
     JMAX [double(1 x 1)] is the maximum number of iterations per
         increment. If JMAX=0 then iterations are not performed and the
         MAXTOL parameter is not taken into account.
     DAK [double(1 x 1)] is the infinitesimal acceleration for the
         calculation of the derivetive required for the convergence of the
         Newton-Raphson iteration.

 Output parameters
     DM [double(:inf x 1)] is the Damage Measure.
     IM [double(:inf x 1)] is the Intensity Measure.

 Example
     eqmotions={'elcentro'};
     data=load([eqmotions{1},'.dat']);
     t=data(:,1);
     dt=t(2)-t(1);
     xgtt=data(:,2);
     sw='ida';
     T=1;
     lambdaF=logspace(log10(0.001),log10(10),100);
     IM_DM='Sa_disp';
     m=1;
     uy = 0.082*9.81/(2*pi/T)^2;
     pysf=0.01;
     ksi=0.05;
     S5=OpenSeismoMatlab(dt,xgtt,sw,T,lambdaF,IM_DM,m,uy,pysf,ksi);
     figure()
     plot(S5.DM*1000,S5.IM/9.81,'k','LineWidth',1)
     grid on
     xlabel('Displacement (mm)')
     ylabel('Sa(T1,5%)[g]')
     xlim([0,200])
     ylim([0,0.7])

__________________________________________________________________________
 Copyright (c) 2018-2023
     George Papazafeiropoulos
     Major, Infrastructure Engineer, Hellenic Air Force
     Civil Engineer, M.Sc., Ph.D.
     Email: gpapazafeiropoulos@yahoo.gr
 _________________________________________________________________________