doc IDA
Documentation of the IDA function.
helpFun('IDA')
Incremental Dynamic Analysis [DM,IM]=IDA(DT,XGTT,T,LAMBDAF,IM_DM,M,UY,PYSF,KSI,ALGID,U0,UT0,... RINF,MAXTOL,JMAX,DAK) Description This function performs incremental dynamic analysis of a given acceleration time history and SDOF oscillator. Input parameters DT [double(1 x 1)] is the time step of the input acceleration time history XGTT. XGTT [double(:inf x 1)] is the input acceleration time history. numsteps is the length of the input acceleration time history. T [double(1 x 1)] contains the eigenperiod of the SDOF system for which the incremental dynamic analysis response curve is requested. LAMBDAF [double(:inf x 1)] contains the values of the scaling factor (lambda factor) for the incremental dynamic analysis. IM_DM [char(1 x :inf)] is the Intensity Measure (IM) - Damage Measure (DM) pair that is to be calculated from the incremental dynamic analysis. IM_DM can take one of the following values (strings are case insensitive): 'SA_MU': Spectral acceleration-ductility 'PGD_MU': Peak displacement-ductility 'PGV_MU': Peak velocity-ductility 'PGA_MU': Peak acceleration-ductility 'SA_DISP': Spectral acceleration-displacement 'PGD_DISP': Peak displacement-displacement 'PGV_DISP': Peak velocity-displacement 'PGA_DISP': Peak acceleration-displacement 'SA_VEL': Spectral acceleration-velocity 'PGD_VEL': Peak displacement-velocity 'PGV_VEL': Peak velocity-velocity 'PGA_VEL': Peak acceleration-velocity 'SA_ACC': Spectral acceleration-acceleration 'PGD_ACC': Peak displacement-acceleration 'PGV_ACC': Peak velocity-acceleration 'PGA_ACC': Peak acceleration-acceleration M [double(1 x 1)] is the mass of the SDOF oscillator. UY [double(1 x 1)] is the yield displacement of the SDOF oscillator. PYSF [double(1 x 1)] is the post-yield stiffness factor, i.e. the ratio of the postyield stiffness to the initial stiffness. PYSF=0 is not recommended for simulation of an elastoplastic system. A small positive value is always suggested. PYSF is ignored if MU=1. KSI [double(1 x 1)] is the fraction of critical viscous damping. ALGID [char(1 x :inf)] is the algorithm to be used for the time integration. It can be one of the following strings for superior optimally designed algorithms: 'generalized a-method': The generalized a-method (Chung & Hulbert, 1993) 'HHT a-method': The Hilber-Hughes-Taylor method (Hilber, Hughes & Taylor, 1977) 'WBZ': The Wood–Bossak–Zienkiewicz method (Wood, Bossak & Zienkiewicz, 1980) 'U0-V0-Opt': Optimal numerical dissipation and dispersion zero order displacement zero order velocity algorithm 'U0-V0-CA': Continuous acceleration (zero spurious root at the low frequency limit) zero order displacement zero order velocity algorithm 'U0-V0-DA': Discontinuous acceleration (zero spurious root at the high frequency limit) zero order displacement zero order velocity algorithm 'U0-V1-Opt': Optimal numerical dissipation and dispersion zero order displacement first order velocity algorithm 'U0-V1-CA': Continuous acceleration (zero spurious root at the low frequency limit) zero order displacement first order velocity algorithm 'U0-V1-DA': Discontinuous acceleration (zero spurious root at the high frequency limit) zero order displacement first order velocity algorithm 'U1-V0-Opt': Optimal numerical dissipation and dispersion first order displacement zero order velocity algorithm 'U1-V0-CA': Continuous acceleration (zero spurious root at the low frequency limit) first order displacement zero order velocity algorithm 'U1-V0-DA': Discontinuous acceleration (zero spurious root at the high frequency limit) first order displacement zero order velocity algorithm 'Newmark ACA': Newmark Average Constant Acceleration method 'Newmark LA': Newmark Linear Acceleration method 'Newmark BA': Newmark Backward Acceleration method 'Fox-Goodwin': Fox-Goodwin formula U0 [double(1 x 1)] is the initial displacement of the SDOF oscillator. UT0 [double(1 x 1)] is the initial velocity of the SDOF oscillator. RINF [double(1 x 1)] is the minimum absolute value of the eigenvalues of the amplification matrix. For the amplification matrix see eq.(61) in Zhou & Tamma (2004). Default value 0. MAXTOL [double(1 x 1)] is the maximum tolerance of convergence of the Full Newton Raphson method for numerical computation of acceleration. JMAX [double(1 x 1)] is the maximum number of iterations per increment. If JMAX=0 then iterations are not performed and the MAXTOL parameter is not taken into account. DAK [double(1 x 1)] is the infinitesimal acceleration for the calculation of the derivetive required for the convergence of the Newton-Raphson iteration. Output parameters DM [double(:inf x 1)] is the Damage Measure. IM [double(:inf x 1)] is the Intensity Measure. Example eqmotions={'elcentro'}; data=load([eqmotions{1},'.dat']); t=data(:,1); dt=t(2)-t(1); xgtt=data(:,2); sw='ida'; T=1; lambdaF=logspace(log10(0.001),log10(10),100); IM_DM='Sa_disp'; m=1; uy = 0.082*9.81/(2*pi/T)^2; pysf=0.01; ksi=0.05; S5=OpenSeismoMatlab(dt,xgtt,sw,T,lambdaF,IM_DM,m,uy,pysf,ksi); figure() plot(S5.DM*1000,S5.IM/9.81,'k','LineWidth',1) grid on xlabel('Displacement (mm)') ylabel('Sa(T1,5%)[g]') xlim([0,200]) ylim([0,0.7]) __________________________________________________________________________ Copyright (c) 2018-2023 George Papazafeiropoulos Major, Infrastructure Engineer, Hellenic Air Force Civil Engineer, M.Sc., Ph.D. Email: gpapazafeiropoulos@yahoo.gr _________________________________________________________________________