doc LEReSp

Documentation of the LEReSp function.

helpFun('LEReSp')
 Linear Elastic Response Spectra

 [PSA,PSV,SD,SV,SA,SIEV]=LERESP(DT,XGTT,T,KSI,DTTOL,...
     ALGID,RINF)

 Description
     The linear elastic response spectra for a given time-history of
     constant time step, a given eigenperiod range and a given viscous
     damping ratio are computed. These spectra include the spectral
     acceleration, spectral velocity, spectral displacement,
     pseudoacceleration, pseudovelocity, absolute equivalent input energy
     velocity and relative equivalent input energy velocity. This function
     is part of the OpenSeismoMatlab software. It can be used as
     standalone, however attention is needed for the correctness of the
     input arguments, since no checks are performed in this function. See
     the example example_LEReSp.m for more details about how this function
     can be implemented.

 Input parameters
     DT [double(1 x 1)] is the time step of the input acceleration time
         history XGTT.
     XGTT [double(1:numsteps x 1)] is the input acceleration time history.
         numsteps is the length of the input acceleration time history.
     T [double(1:numSDOFs x 1)] contains the values of eigenperiods for
         which the response spectra are requested. numSDOFs is the number
         of SDOF oscillators being analysed to produce the spectra.
     KSI [double(1 x 1)] is the fraction of critical viscous damping.
     DTTOL [double(1 x 1)] is the maximum ratio of the integration time
         step to the eigenperiod.
     ALGID [char(1 x :inf)] is the algorithm to be used for the time
         integration. It can be one of the following strings for superior
         optimally designed algorithms:
             'generalized a-method': The generalized a-method (Chung &
             Hulbert, 1993)
             'HHT a-method': The Hilber-Hughes-Taylor method (Hilber,
             Hughes & Taylor, 1977)
             'WBZ': The Wood–Bossak–Zienkiewicz method (Wood, Bossak &
             Zienkiewicz, 1980)
             'U0-V0-Opt': Optimal numerical dissipation and dispersion
             zero order displacement zero order velocity algorithm
             'U0-V0-CA': Continuous acceleration (zero spurious root at
             the low frequency limit) zero order displacement zero order
             velocity algorithm
             'U0-V0-DA': Discontinuous acceleration (zero spurious root at
             the high frequency limit) zero order displacement zero order
             velocity algorithm
             'U0-V1-Opt': Optimal numerical dissipation and dispersion
             zero order displacement first order velocity algorithm
             'U0-V1-CA': Continuous acceleration (zero spurious root at
             the low frequency limit) zero order displacement first order
             velocity algorithm
             'U0-V1-DA': Discontinuous acceleration (zero spurious root at
             the high frequency limit) zero order displacement first order
             velocity algorithm
             'U1-V0-Opt': Optimal numerical dissipation and dispersion
             first order displacement zero order velocity algorithm
             'U1-V0-CA': Continuous acceleration (zero spurious root at
             the low frequency limit) first order displacement zero order
             velocity algorithm
             'U1-V0-DA': Discontinuous acceleration (zero spurious root at
             the high frequency limit) first order displacement zero order
             velocity algorithm
             'Newmark ACA': Newmark Average Constant Acceleration method
             'Newmark LA': Newmark Linear Acceleration method
             'Newmark BA': Newmark Backward Acceleration method
             'Fox-Goodwin': Fox-Goodwin formula
     RINF [double(1 x 1)] is the minimum absolute value of the eigenvalues
         of the amplification matrix. For the amplification matrix see
         eq.(61) in Zhou & Tamma (2004).

 Output parameters
     PSA [double(1:numSDOFs x 1)] is the Pseudo Acceleration Spectrum.
     PSV [double(1:numSDOFs x 1)] is the Pseudo Velocity Spectrum.
     SD [double(1:numSDOFs x 1)] is the Spectral Displacement.
     SV [double(1:numSDOFs x 1)] is the Spectral Velocity.
     SA [double(1:numSDOFs x 1)] is the Spectral Acceleration.
     SIEV [double(1:numSDOFs x 1)] is the equivalent relative input
         energy velocity. See: {Uang, C. M., & Bertero, V. V. (1990).
         Evaluation of seismic energy in structures. Earthquake
         engineering & structural dynamics, 19(1), 77-90} for more
         details.

 Example
     dt=0.02;
     N=10;
     a=rand(N,1)-0.5;
     b=100*pi*rand(N,1);
     c=pi*(rand(N,1)-0.5);
     t=(0:dt:(100*dt))';
     xgtt=zeros(size(t));
     for i=1:N
         xgtt=xgtt+a(i)*sin(b(i)*t+c(i));
     end
     T=logspace(log10(0.02),log10(50),1000)';
     ksi=0.05;
     dtTol=0.02;
     AlgID='U0-V0-Opt';
     rinf=1;
     [PSa,PSv,Sd,Sv,Sa,Siev]=LEReSp(dt,xgtt,T,ksi,dtTol,...
         AlgID,rinf);

__________________________________________________________________________
 Copyright (c) 2018-2023
     George Papazafeiropoulos
     Major, Infrastructure Engineer, Hellenic Air Force
     Civil Engineer, M.Sc., Ph.D.
     Email: gpapazafeiropoulos@yahoo.gr
 _________________________________________________________________________