doc RPSReSp
Documentation of the RPSReSp function.
helpFun('RPSReSp')
Rigid Plastic Sliding Response Spectra [SD,SV,SA]=RPSReSp(DT,XGTT,CF,ALGID,RINF,MAXTOL,JMAX,DAK) Description The rigid plastic sliding response spectra for a given time-history of constant time step and a given Coulomb friction coefficient range are computed. Input parameters DT [double(1 x 1)] is the time step of the input acceleration time history XGTT. XGTT [double(1:numsteps x 1)] is the input acceleration time history. numsteps is the length of the input acceleration time history. CF [double(1:numSDOFs x 1)] contains the values of the Coulomb friction coefficient for which the response spectra are requested. numSDOFs is the number of SDOF oscillators being analysed to produce the spectra. ALGID [char(1 x :inf)] is the algorithm to be used for the time integration. It can be one of the following strings for superior optimally designed algorithms: 'generalized a-method': The generalized a-method (Chung & Hulbert, 1993) 'HHT a-method': The Hilber-Hughes-Taylor method (Hilber, Hughes & Taylor, 1977) 'WBZ': The Wood–Bossak–Zienkiewicz method (Wood, Bossak & Zienkiewicz, 1980) 'U0-V0-Opt': Optimal numerical dissipation and dispersion zero order displacement zero order velocity algorithm 'U0-V0-CA': Continuous acceleration (zero spurious root at the low frequency limit) zero order displacement zero order velocity algorithm 'U0-V0-DA': Discontinuous acceleration (zero spurious root at the high frequency limit) zero order displacement zero order velocity algorithm 'U0-V1-Opt': Optimal numerical dissipation and dispersion zero order displacement first order velocity algorithm 'U0-V1-CA': Continuous acceleration (zero spurious root at the low frequency limit) zero order displacement first order velocity algorithm 'U0-V1-DA': Discontinuous acceleration (zero spurious root at the high frequency limit) zero order displacement first order velocity algorithm 'U1-V0-Opt': Optimal numerical dissipation and dispersion first order displacement zero order velocity algorithm 'U1-V0-CA': Continuous acceleration (zero spurious root at the low frequency limit) first order displacement zero order velocity algorithm 'U1-V0-DA': Discontinuous acceleration (zero spurious root at the high frequency limit) first order displacement zero order velocity algorithm 'Newmark ACA': Newmark Average Constant Acceleration method 'Newmark LA': Newmark Linear Acceleration method 'Newmark BA': Newmark Backward Acceleration method 'Fox-Goodwin': Fox-Goodwin formula RINF [double(1 x 1)] is the minimum absolute value of the eigenvalues of the amplification matrix. For the amplification matrix see eq.(61) in Zhou & Tamma (2004). MAXTOL [double(1 x 1)] is the maximum tolerance of convergence of the Full Newton Raphson method for numerical computation of acceleration. JMAX [double(1 x 1)] is the maximum number of iterations per increment. If JMAX=0 then iterations are not performed and the MAXTOL parameter is not taken into account. DAK [double(1 x 1)] is the infinitesimal acceleration for the calculation of the derivetive required for the convergence of the Newton-Raphson iteration. Output parameters SD [double(1:numSDOFs x 1)] is the Spectral Displacement. SV [double(1:numSDOFs x 1)] is the Spectral Velocity. SA [double(1:numSDOFs x 1)] is the Spectral Acceleration. Example dt=0.02; N=1; a=rand(N,1)-0.5; b=100*pi*rand(N,1); c=pi*(rand(N,1)-0.5); t=(0:dt:(100*dt))'; xgtt=zeros(size(t)); for i=1:N xgtt=xgtt+a(i)*sin(b(i)*t+c(i)); end figure() plot(t,xgtt) CF=linspace(0.05,0.5,1000)'; AlgID='U0-V0-Opt'; rinf=1; maxtol=0.01; jmax=200; dak=eps; [Sd,Sv,Sa]=RPSReSp(dt,xgtt,CF,AlgID,rinf,maxtol,jmax,dak); figure() plot(CF,Sd) figure() plot(CF,Sv) figure() plot(CF,Sa) __________________________________________________________________________ Copyright (c) 2018-2023 George Papazafeiropoulos Major, Infrastructure Engineer, Hellenic Air Force Civil Engineer, M.Sc., Ph.D. Email: gpapazafeiropoulos@yahoo.gr _________________________________________________________________________