verification Linear dynamic response of SDOF oscillator
Calculate the dynamic response of a linear SDOF oscillator. This example verifies Figure 6.6.1 in Chopra for Tn=1sec
Contents
Reference
Chopra, A. K. (2020). Dynamics of structures, Theory and Applications to Earthquake Engineering, 5th edition. Prenctice Hall.
Earthquake motion
Load earthquake data
dt=0.02; fid=fopen('elcentro_NS_trunc.dat','r'); text=textscan(fid,'%f %f'); fclose(fid); xgtt=text{1,2};
Setup parameters for LIDA function
Eigenperiod
Tn=1;
Critical damping ratio
ksi=0.02;
Initial displacement
u0=0;
Initial velocity
ut0=0;
Algorithm to be used for the time integration
AlgID='U0-V0-Opt';
Minimum absolute value of the eigenvalues of the amplification matrix
rinf=1;
Calculate dynamic response
Calculate circular eigenfrequency
omega=2*pi/Tn;
Apply LIDA
[u,ut,utt] = LIDA(dt,xgtt,omega,ksi,u0,ut0,AlgID,rinf);
Results
Maximum displacement in cm
D=max(abs(u))*100
D = 15.0632751930384
Copyright
Copyright (c) 2018-2023 by George Papazafeiropoulos
- Major, Infrastructure Engineer, Hellenic Air Force
- Civil Engineer, M.Sc., Ph.D.
- Email: gpapazafeiropoulos@yahoo.gr