verification Linear dynamic response of SDOF oscillator

Calculate the dynamic response of a linear SDOF oscillator. This example verifies Figure 6.6.1 in Chopra for Tn=1sec

Contents

Reference

Chopra, A. K. (2020). Dynamics of structures, Theory and Applications to Earthquake Engineering, 5th edition. Prenctice Hall.

Earthquake motion

Load earthquake data

dt=0.02;
fid=fopen('elcentro_NS_trunc.dat','r');
text=textscan(fid,'%f %f');
fclose(fid);
xgtt=text{1,2};

Setup parameters for LIDA function

Eigenperiod

Tn=1;

Critical damping ratio

ksi=0.02;

Initial displacement

u0=0;

Initial velocity

ut0=0;

Algorithm to be used for the time integration

AlgID='U0-V0-Opt';

Minimum absolute value of the eigenvalues of the amplification matrix

rinf=1;

Calculate dynamic response

Calculate circular eigenfrequency

omega=2*pi/Tn;

Apply LIDA

[u,ut,utt] = LIDA(dt,xgtt,omega,ksi,u0,ut0,AlgID,rinf);

Results

Maximum displacement in cm

D=max(abs(u))*100
D =

          15.0632751930384

Copyright

Copyright (c) 2018-2023 by George Papazafeiropoulos