verification Strength ductility relation of elastoplastic system
Contents
Reference
Mahin, S. A., & Lin, J. (1983). Construction of inelastic response spectra for single-degree-of-freedom systems. Earthquake Engineering Center, University of California, Berkeley.
Description
Figure 15 of the above reference is reproduced in this example, for an elastic perfectly plastic (EPP) system with eigenperiod equal to 0.7 sec and damping ratio equal to 0.05. The NS component of the El Centro earthquake (1940) is considered. It is demonstrated that there can be more than one values of strength corresponding to a given displacement ductility.
Load earthquake data
Earthquake acceleration time history of the El Centro earthquake will be used (El Centro, 1940, NS component)
fid=fopen('elcentro_NS_full.dat','r'); text=textscan(fid,'%f %f'); fclose(fid); t=text{1,1}; dt=t(2)-t(1); xgtt=9.81*text{1,2};
Setup parameters for NLIDABLKIN function for linear SDOF
Mass
m=1;
Eigenperiod
Tn=0.7;
Calculate the small-strain stiffness matrix
omega=2*pi/Tn; k_hi=m*omega^2;
Assign linear elastic properties
k_lo=0.001*k_hi;
Assign yield displacement
eta=[0.3,0.5,0.8,0.9,1.0,1.3,1.5]; uy=eta*max(abs(xgtt))/k_hi;
Critical damping ratio
ksi=0.05;
Initial displacement
u0=0;
Initial velocity
ut0=0;
Algorithm to be used for the time integration
AlgID='U0-V0-Opt';
Minimum absolute value of the eigenvalues of the amplification matrix
rinf=1;
Maximum tolerance of convergence for time integration algorithm
maxtol=0.01;
Maximum number of iterations per integration time step
jmax=200;
Infinitesimal acceleration
dak=eps;
Calculate dynamic response of the linear SDOF
Apply NLIDABLKIN
mu=zeros(1,numel(uy)); for i=1:numel(uy) [u,ut,utt,Fs,Ey,Es,Ed,jiter] = NLIDABLKIN(dt,xgtt,m,k_hi,k_lo,uy(i),... ksi,AlgID,u0,ut0,rinf,maxtol,jmax,dak); mu(i)=max(abs(u))/uy(i); end
Plot the energy time history of the linear SDOF
Plot the damping energy and strain energy of the linearly elastic SDOF system. Convert from m to cm
figure() loglog(mu,eta,'k','LineWidth',1) xlim([1,10]) ylim([0.2,2]) set(gca, 'XTick', [1,2,5,10]) set(gca, 'YTick', [0.2,0.5,1,2]) xlabel('Displacement Ductility (-)','FontSize',10); ylabel('\eta-Value (-)','FontSize',10); grid on legend({'ksi=0.05'}) drawnow; pause(0.1)
Copyright
Copyright (c) 2018-2023 by George Papazafeiropoulos
- Major, Infrastructure Engineer, Hellenic Air Force
- Civil Engineer, M.Sc., Ph.D.
- Email: gpapazafeiropoulos@yahoo.gr